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Abstract

We present an approach for vehicle classification in IR
video sequences by integrating detection, tracking and
recognition. The method has two steps. First, the moving
target is automatically detected using a detection algorithm.
Next, we perform simultaneous tracking and recognition us-
ing an appearance-model based particle filter. The tracking
result is evaluated at each frame. Low confidence in track-
ing performance initiates a new cycle of detection, tracking
and classification. We demonstrate the robustness of the
proposed method using outdoor IR video sequences.

1. Introduction
Recently, video-based vehicle classification has gained
much attention, especially in automatic traffic management,
surveillance and battlefield awareness. Typically, detection
and tracking are often solved before classification. In Lip-
ton et al. (1998), a tracking and classification system is de-
scribed that can categorize moving objects as vehicles or
humans. However, it does not further classify the vehi-
cle into various classes. Wu et al. (2001) uses parameter-
ized model and neural networks for vehicle classification.
In Gupte et al. (2002), vehicles are modeled as rectangular
patches with certain dynamic behavior and Kalman filter-
ing is used to estimate the vehicle parameters. In Koller
(1993), an object classification approach that uses parame-
terized 3D-models is described. The system uses a 3D poly-
hedral model to classify vehicles in a traffic sequence. In
Kagesawa et al. (2001), a method for recognizing a vehi-
cle’s maker and model is proposed. It first creates a com-
pressed database of local features of target vehicles from
training images and then matches them with the local fea-
tures of the probe image for recognition.

In this paper, we tackle the problem of vehicle classifi-
cation by integrating detection, tracking and recognition. In
our system, the moving vehicle is automatically detected,
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Figure 1: A flow chart of our system.

tracked and recognized without any interruptions. The flow
chart of our system is shown in Fig.1. The video sequences
are input to our system. The moving target is detected using
temporal variance analysis. The target is tracked and clas-
sified simultaneously using an appearance model and mix-
tures of probabilistic principal component analysis Tipping
and Bishop (1999)(PPCA). Evaluation of the tracking per-
formance is performed at each frame. If the performance
falls below some threshold, the cycle of detection, tracking
and classification is re-initiated, otherwise the tracking and
classification propagates to the next frame.

There are four types of vehicles used in the experiment.

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
00 DEC 2004 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Video-based Automatic Target Recognition 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Center for Automation Research and Department of ECE University of
Maryland, College Park, MD, 20742 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
See also ADM001736, Proceedings for the Army Science Conference (24th) Held on 29 November - 2
December 2004 in Orlando, Florida., The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

6 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



They are ‘m60’, ‘brdm’, ‘wetting’ and ‘bmp’. Four probe
video sequences each of which contains different vehicles
are used for classification. Fig.2 shows two image samples
from the probe video sequence ‘bmp1’. Fig.2(a) shows the
side view of ‘bmp’ and (b) the frontal view. The target-to-
background contrast is very low for the IR images. This
adds much difficulty for the detection and tracking of mov-
ing target.

Unlike Zhou et al. (2003)’s method which manually se-
lects the moving target in the first frame, we automatically
select it using a detection algorithm. Because of the pres-
ence of smoke and dust in IR videos as showed in Fig.2, it
is hard to position a tight rectangular bounding box from
the detection algorithm. Consequently, the tracker drifts
quickly. This brings a need for the evaluation of the tracking
performance. The evaluation generates a confidence mea-
sure to indicate whether we should restart the detection once
the tracking confidence falls below a threshold.

We use mixtures PPCA Tipping and Bishop (1999) for
appearance modeling. We then compute the posteriori prob-
ability of finding the appearance of each object in the given
video and assign the label corresponding to the maximum.

The rest of this paper is organized as follows. Section 2
describes the detection algorithm. Section 3 describes the
tracking and classification algorithm. Section 4 details the
simultaneous evaluation for the tracking and section 5 de-
scribes experiments. Finally, conclusion and future work
are discussed in section 6.

2. Target Detection
Detection plays an important role in our system. It is a pre-
requisite for the tracking. It gives an initial bounding box
surrounding the target and re-initialize the target if tracking
confidence measure is low.

Given a video sequences{Ii}, we setm1 = I1 and
mv1 = I1 × I1. The operator× is the element-by-element
produce of two matrices. The followingmi, mvi and
imvari are defined as

mi = {(N − 1) ∗mi−1 + Ii}/N, (1)

mvi = {(N − 1) ∗mvi−1 + Ii × Ii}/N, (2)

imvari =
√

mvi −mi ×mi, (3)

whereN is the window size for detection which is 150
in our experiment.

For the elementp(i, j) in imvari, we will setp(i, j) = 1
if p(i, j) > T , otherwisep(i, j) = 0, whereT is the thresh-
old. Now imvari is converted to a binary image which
we call the variance image. We then select the rectangular

bounding box for the moving target by checkingp(i, j) = 1
in the image.

Figures 3 and 4 show the detection results for ‘brdm’ and
‘m60’ respectively. From Fig.3, we can see the bounding
box is very big due to the smoke emitted by the vehicle.
In Fig.4, the similarity between the environment and target
affect the bounding box localization.

3. Target Tracking and Classification
This section describes the vehicle tracking and classifica-
tion algorithm. In section 2.1, the state space model used
for tracking and classification is described. Tracking and
classification are implemented simultaneously by estimat-
ing the posterior distribution . In section 2.2, the mixtures
of PPCA algorithm for estimating the distribution of iden-
tity variable for the classification is detailed.

3.1. State Space Model
A time series state space model uses the state variablext =
{nt, θt}, which includes identity variablent and 2D affine
transformation motion parametersθt. The system equation
is written as

nt = nt−1 θt = θt−1 + ut, t ≥ 1 (4)

where we assume that the motion variable follows a
Markov process withut as a white Gaussian noise pro-
cess. nt ∈ N = {1, 2, · · · , N} indexes the gallery set
{I1, I2, · · · , IN}.

A simple formulation of the observation equation can be
characterized as

Zt = T{Yt; θt} = Int + Vt (5)

WhereZt is the image patch of interest in the video frame,
T is an affine transformation to normalize the image to the
same size of the gallery images, andVt is the noise. The ob-
servation equation is equivalently characterized by the like-
lihood p(Yt|nt, θt) = p(Zt|nt). In the next section, we
definep(Zt|nt) as mixtures of PPCA.

The essence of the approach is posterior probability
computation, i.e. computingp(nt, θt|Y1:t), whose marginal
posterior probabilityp(nt|Y1:t) solves the classification task
and marginal posterior probabilityp(θt|Y1:t) solves the
tracking task.

Classification is based on a Maximum A Posteriori
(MAP) decision rule, namely findingnt that maximizes
p(nt|Y1:t). The Sequential Importance Sampling(SIS) Liu
and Chen (1998) method is used to approximate and prop-
agate the posterior probabilityp(nt, θt|Y1:t), and marginal-
ization over variableθt is carried out before applying the
classification rule. Detailed descriptions can be found in
Zhou et al. (2004).
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(a) (b)

Figure 2: Image frames from video sequences ‘bmp1’. It shows the side view(a) and the frontal view(b) of the vehicle.

(a) (b)

Figure 3: Detection result for ‘brdm’. (a) is the original image and (b) is the detected target chip. It shows how the smoke
emitted by the vehicle affects the detection result.

3.2 Mixtures of Probabilistic PCA

Subspace analysis techniques have attracted growing inter-
est in computer vision research. In particular, eigenvector
decomposition has been shown to be an effective tool for
solving problems by using a low-dimensional vector to rep-
resent high-dimensional vector. Here we will follow Tip-
ping and Bishop (1999) for the mixtures of PPCA.

Given a set ofm by n images{Zi}, we form a set of
vectors{ti}, whereti ∈ Rd=mn, by lexicographic ordering
of the pixel elements of each imageZi. For anyt in {ti}, we
relate it to a correspondingγ-dimensional vector variablex
as:

t = Wx + µ + ε (6)

whered À γ andµ is the mean of thex.
For the case of isotropic noiseε ∼ N(0, σ2I) , the dis-

tribution overt-space for a givenx of the form

p(t|x) = (2πσ2)−d/2exp{− 1
2σ2

‖t−Wx− µ‖2} (7)

With a Gaussian prior for thex, we obtain the marginal
distribution oft

p(t) = (2π)−d/2|C|−1/2exp{−1
2
(t− µ)T C−1(t− µ)},

(8)
where the covariance is

C = σ2I + WWT . (9)

The mixtures of PPCA can model more complex data
structures. The model parameters are determined using
maximum likelihood estimation. The mixture model is de-
fined as:

p(t) =
M∑

i=1

πip(t|i) (10)

wherep(t|i) is a single PPCA model andπi is the corre-
sponding mixing proportion, withπi ≥ 0 and

∑
πi = 1.

Now the three parametersµ, W andσ2 are associated with
each of theM mixture components. We use an iterative EM
algorithm for estimating the model parameters.

4 Tracking Evaluation

Most practical tracking systems often fail under some situa-
tions. This could be either because of illumination changes,
pose variation or occlusion. Therefore, the need for au-
tomatic performance evaluation emerges in these applica-
tions. Fig.5 shows the tracking result after running the
tracker for some time. The bounding box is so large that one
concludes that the tracker is already failing. Hence, evalu-
ation is necessary to help us terminate tracking and restart
the detection-tracking-classification cycle.

Our evaluation algorithm is based on measuring the ap-
pearance similarity and tracking uncertainty. The following
features are examined in our evaluation:

1. Trace complexityqtc: We define the trace complexity
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(a) (b)

Figure 4: Detection result for ‘m60’. (a) is the original image and (b) is the detected target chip. It shows how contrast and
SNR affect the detection result.

Figure 5: An example of poor tracking.

as the ratio of the curve length and straight length be-
tween the target centroids in different frames.

2. Motion stepqms: It is defined as the distance between
the box centers in two consecutive frames.

3. Scale changeqsc: To examine changes in object scale,
we use two clues. One is the ratio of the current area to
the initial area, the other is the scale change velocity.

4. Shape similarityqss: The change in the aspect ratio
of the bounding box is also useful in providing some
information about the object shape. It is defined as the
ratio of the current aspect ratio over the initial ratio.

5. Appearance changeqac: Three measures are used in
our algorithm, the first one is the absolute pixel by
pixel change between the current frame and the ini-
tial frame, the second one is the histogram difference
between the current frame and the initial frame and the
last one is related to the tracking algorithm over which
the proposed algorithm was tested.

To obtain a comprehensive measure of the tracking per-
formance, we combine the above five indicators. We first
use empirical thresholds to find whether the tracker is un-
certain according to the above five metrics, then we sum
the five indicators using different weights to arrive at a con-
fidence measureq. If the sum drops below some thresh-
old, we conclude that the tracking performance is poor and

needs re-initialization.

q =
∑

j∈J

wjI[qj < λj ], J ∈ {tc,ms, sc, ss, ac} (11)

wherewj andλj are the corresponding weights and thresh-
olds for the evaluation.

5 Experiments

In this section, we give details of our implementation.
Training and testing are described in the next two sec-
tions respectively. In our experiment, the vehicle mo-
tion is characterized byθ = (a1, a2, a3, a4, tx, ty), where
{a1, a2, a3, a4} are the deformation parameters and(tx, ty)
are the 2D translation parameters. By applying an affine
transformation usingθ as parameters, we crop the region
of interest so that it has the same size as the still template
in the gallery and perform zero-mean-unit-variance normal-
ization. The region of interest is24× 30 in size.

5.1 Training

We use one video sequence for each vehicle and obtain the
tracking result. Then we select 36 images for each vehicle
in the gallery. The pertinent parameters for the experiment
areM = 2 andγ = 15.

Fig.6 is the gallery of the vehicle images. There are a to-
tal of 144 images in the gallery. They are ‘m60’, ‘brdm’,
‘wetting’ and ‘bmp’ from top to bottom, each has three
rows.

After we have the gallery images, we use mixtures of
PPCA to estimate the parametersπi,µi, Wi andσ2

i .

5.2 Testing

For each frame, we get the motion parameters after track-
ing and cropping out the region of interest of size24 × 30
from the original image. After performing zero mean and
unit variance operation, we substitute the vector ast into
equation (10) and get the probabilities for each vehicle. We
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(a) m60

(b) brdm

(c) wetting

(d) bmp

Figure 6: Gallery of vehicle images. The image size is 24
by 30.

pick the vehicle which has the highest probability as our
classification result after normalization. The probabilities
propagate to the next frame. In each frame, if the confi-
dence measure is below some threshold, the detection will
restart 20 frames before the drifting point and tracking and
classification will restart too.

Fig.7 shows the tracking and recognition results for ‘wet-
ting1’ and Fig.8 is for ‘bmp1’. In Fig.7(a), the image on
the top is the tracking result for the current frame. We put
a bounding box for the vehicle which we are tracking in
each frame with a different color for different vehicles. The
image on the left of the bottom is the classification score
which is the probability of seeing each vehicle in the video.
It shows the result from the first frame to the current frame.
The image to the right is the tracking confidence measure
which represents the probability of the correct tracking re-
sult. We will restart detection and tracking if the measure
falls below the threshold of 0.5. The same description ap-
plies to Fig7(b) and Fig.8.

From Fig.7, we observe that the recognition result for
the ‘wetting1’ is very good because a high probability is as-
sociated with ‘wetting’ (dotted blue line) on almost every
frame. There are several peaks and valleys for the dotted
blue line due to the re-initialization of the tracking and the
evaluation probability on the right drops very quickly at cor-
responding frames. In Fig.8, for the recognition of ‘bmp1’,
it is confused by ‘brdm’ for the first half of the sequence.
It is very hard to get an initial tight bounding box due to

m60 brdm wetting bmp
m60 93.82% 3.17% 0 3.01%
brdm 0 85.64% 0 14.36%

wetting 0 0 95.65% 4.35%
bmp 0 18.85% 0 81.15%

Table 1: Confusion matrix for vehicle classification experi-
ment.

the smoke emitted by ‘bmp1’ using the detection algorithm.
The tracker quickly drifts away after about 40 frames given
the initial location. For frame 99, the result is incorrect, as it
gives ‘brdm’ as the recognition result. The result becomes
stable and correct after 400 frames. After running the whole
video sequence, the correct recognition result is quite good.
For this situation, we will classify that the vehicle we are
tracking is ‘bmp’ which yields the correct result.

The results of the experiment are summarized in Table 1.
Each number in a row is the recognition percentage of the
vehicle. Taking the second row as an example, 93.82% of
the whole sequence recognizes the vehicle as ‘bmp’, while
3.17% as ‘brdm’ and 3.01% as ‘bmp’. No frame recognizes
it as ‘wetting’. The elements in the diagonal give the correct
recognition score for our experiment. The overall accuracy
of the recognition is 89.07%.

6 Conclusion and Future Work

In this paper, we have proposed an approach for vehicle
classification by integrating detection, tracking and recogni-
tion. The experiment results prove our method’s robustness
and effectiveness.

Our future work will include improving detection, track-
ing and evaluation algorithms and developing a more robust
and stable recognition algorithm. Large data set will also be
tested to obtain a more general analysis.
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Figure 7: Tracking and recognition results for ‘wetting1’. The results are from frame 1 to 99 for (a) and frame 1 to 799 for (b).
The top panel shows the original image and tracking result, the bottom left panel shows the recognition densityp(nt|Y1:t),
and the bottom right panel shows the tracking confidenceq.

(a) (b)

Figure 8: Tracking and recognition results for ‘bmp1’. The results are from frame 1 to 99 for (a) and frame 1 to 830 for (b).
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